THE CONSTRUCTION OF PHASE PATHS OF A HAMILTONIAN SYSTEM IN THE NEIGHBOURHOOD OF AN EQUILIBRIUM*

I.I. KOSENKO

Abstract

A non-autonomous periodic Hamiltonian system with one degree of freedom is studied in the neighbourhood of an elliptical equilibrium point. A uniform approximation of the solution in a finite time interval in the resonance case is determined using the projection method, instead of the traditional perturbation theoretical method.

The Cauchy problem is reduced to a functional equation in the space of the derivatives, and a Galerkin scheme is constructed for this equation. A theorem is proved on convergence of the sequence of approximations to the exact solution. Every finite-dimensional approximation of sufficiently high order may be found by explicit iterations. The results can be generalized to dynamical systems of higher dimensions.

1. Statement of the problem. Near the equilibrium $\mathbf{q}=\mathbf{p}=0$, the canonical system with n degrees of freedom has the form

$$
\begin{equation*}
\mathbf{q}^{\cdot}=H_{\mathbf{p}}, \mathbf{p}^{\cdot}=-H_{\mathbf{q}} \quad\left(\mathbf{q}, \mathbf{p} \in \mathbf{R}^{n}\right) \tag{1.1}
\end{equation*}
$$

where the Hamilton function can be expanded in a power series around zero starting with second-order terms

$$
H(\mathbf{q}, \mathbf{p}, t)=H_{2}(\mathbf{q}, \mathbf{p}, t)+H_{3}(\mathbf{q}, \mathbf{p}, t)+\cdots
$$

The paths in a small neighbourhood can be constructed by perturbation theory. Changing to new variables $q=\varepsilon x, \quad \mathbf{p}=\varepsilon \mathbf{y}$, we obtain the system of equations

$$
\mathbf{x}^{\prime}=K_{y}, \mathbf{y}^{\cdot}=-K_{\mathbf{x}}\left(\mathbf{x}, \mathbf{y} \in \mathbf{R}^{n}\right)
$$

The new Hamiltonian has the form

$$
\begin{equation*}
K(\mathbf{x}, \mathbf{y}, t, \varepsilon)=H_{2}(\mathbf{x}, \mathbf{y}, t)+\varepsilon H_{3}(\mathbf{x}, \mathbf{y}, t)+\ldots \tag{1.2}
\end{equation*}
$$

The non-perturbed case corresponds to a linear (in general non-autonomous) system. We can change to new variables by the method of variation of arbitrary constants. Denoting the phase vector by $z=(x, y)^{T}$, we can write the solution of the Hamiltonian system in the form

$$
\begin{equation*}
\mathbf{z}=Z(t) \xi \quad\left(Z(0)=E, \zeta \Leftarrow \mathbf{R}^{2 n}\right) \tag{1.3}
\end{equation*}
$$

where $Z(t)$ is the fundamental matrix. The transformation defined by $Z(t)$ is obviously canonical. Changing to the phase vector ζ, we obtain the Hamiltonian system

$$
\begin{gather*}
\stackrel{\varphi}{\zeta}=\varepsilon I F_{\zeta}(\zeta, t, \varepsilon) \quad\left(I^{2}=-E\right) \tag{1.4}\\
\varepsilon F(\zeta, t, \varepsilon)=\varepsilon H_{\mathrm{a}}(Z(t) \zeta, t)+\ldots
\end{gather*}
$$

The procedure proposed in this paper can be applied after the given problem has been reduced to this form.

To fix our ideas, consider a system with one degree of freedom and a 2π-periodic (in time) Hamilton function $K(q, p, t)(q, p \in \mathbf{R})$. The problem of the motion of an asteroid in the neighbourhood of a periodic orbit can be reduced to such a problem. Thus, let $\pm i \lambda \neq 0$ be the characteristic exponents of the first-approximation system, where 2λ is a non-integer. Then the canonical 2π-periodic transformation $\quad(q, p) \mapsto(Q, P)$ reduces H_{2} to normal form $H_{2}=2^{-1} \lambda\left(Q^{2}+P^{2}\right)$.

We apply a scaling transformation to enlarge the neighbourhood of the equilibrium as described above: $Q=\varepsilon x, P=\varepsilon y$. The solution of the unperturbed problem now has the form (1.3). where $z=(x, y)^{T}$, and $Z(t)$ is the fundamental matrix

[^0]\[

\left.Z(t)=\| $$
\begin{array}{rr}
\cos \lambda t & \sin \lambda t \\
-\sin \lambda t & \cos \lambda t
\end{array}
$$ \right\rvert\,
\]

Thus,

$$
\mathrm{z}(t)=\zeta \cos \lambda t+I \xi \sin \lambda t=2^{-1}(\xi-i J \xi) e^{i \lambda t}+(2 i)^{-1}(\xi+i I \xi) e^{-i \lambda t}
$$

where $\zeta=\left(\zeta_{1}, \zeta_{2}\right)$, and I is the symplectic matrix $\left(X^{2}=-E\right)$. Thus, the system of differential equations has a standard form (1.4) (in the sense of Bogolyubov/1/) with the Hamilton function

$$
\mathrm{eF}(\xi, t, \mathrm{e})=\varepsilon H_{3}\left(\varepsilon^{-1}(\xi-i l \xi) e^{i n t}+(2 i)^{-1}(\xi+i 1 \xi) e^{-i \lambda t}, t\right)+\cdots
$$

Since the explicit dependence of the homogeneous forms $H_{k}(a, t)(k \geqslant 3)$ on t is $2 \pi^{-}$ periodic, their coefficients can be expanded in Fouriex series in the functions $e^{i n t}(n \in Z)$ These expansions may be treated as Laurent series in the variable $e^{i t}$. The Hamiltonian can be conveniently represented in the form

$$
\varepsilon F(\xi, t, \varepsilon)=\sum_{s=3}^{\infty} \varepsilon^{s-2} F_{s}\left(\xi, e^{i \lambda t}, e^{i t}\right)
$$

where the homogeneous forms F_{s} (in the variables $\zeta_{i}\left(i=1,2\right.$) are expressed as $F_{s}=H_{s}$ (Z $(t) \zeta, t)$.

Resonance cases are of particular interest. In these cases, we should have $k \lambda=r \leftrightarrows$ $Z(k \geqslant 3)$ and the Hamilton function $\varepsilon F(\xi, t, \varepsilon)$ is t-periodic. For ease of presentation, we will change to a new independent variable τ by the formula $t=k t$. The homogeneous forms F_{s} are polynomial in ε, $e^{i \tau \tau}$, and $e^{i k \tau}$, and their expansions contain both positive and negative powers of exponential functions.

In what follows, the phase space is \mathbf{C}^{2} - the complexification of \mathbf{R}^{2}.
After all these transformations, we obtain a non-autonomous τ periodic system of secondorder differential equations (the prime denotes differentiation with respect to τ)

$$
\begin{gather*}
\zeta=\varepsilon \mathbf{\zeta}(\xi, \tau, \varepsilon) \tag{1.5}\\
\varepsilon Z(\zeta, \tau, \varepsilon)=\varepsilon k I F_{\xi}(\xi, k \tau, \varepsilon)=\sum_{s=3}^{\infty} \varepsilon^{s-2} k I F_{s \xi}\left(\xi, e^{i r \tau}, e^{i k \tau}\right)=\sum_{s=3}^{\infty} \varepsilon^{s-2} Z_{s}(\zeta, \tau) \tag{1.6}
\end{gather*}
$$

The vector functions Z_{s} are homogeneous in ξ of degree s.
2. Reduction. Our goal now is construct in $[0,2 \pi]$ the solution of the Cauchy problem of system (1.5) corresponding to the initial condition vector ξ_{0}. we will use the projection method. In order to ensure uniform approximation to the solution in $10,2 \pi]$, further transformation of the problem is required. We will change from the space of continuous vector functions $\zeta(\tau)$ to the space of the derivatives $\xi^{\prime}(\tau)$.

Let us formalize our statements in rigorous form. We denote by $C A$ the class of functions $\xi:[a, b] \rightarrow \mathbf{C}^{n} \quad$ absoluteiy continuous in $[a, b] \subset \mathbf{R}, C A$ is a linear space, and if we introduce the norm

$$
\begin{equation*}
\left.\|\zeta\|_{A}=\|\xi(a)\|+\operatorname{Var}(l a, b], \zeta\right) \tag{2.1}
\end{equation*}
$$

then CA becomes a Banach space.
On the other hand, consider the Banach space L_{1} of classes of almost everywhere equal Lebesgue-integrable functions $\gamma:[a, b] \rightarrow \mathbb{C}^{n}$. The norm in L_{1} is defined by the formula

$$
\begin{equation*}
\|\gamma\|_{1}=\int_{a}^{b}\|\gamma(\tau)\| d \tau \tag{2.2}
\end{equation*}
$$

Now let $D: C A \rightarrow L_{1}$ be the differentiation operator with respect to the variable $\tau:(D \xi)(\tau)=\xi^{\prime}(\tau)$. We know from analysis /2/ that there is a unique correspondence between the properties of summability and absolute continuity of functions of a real variable. If the function $\zeta(\tau)$ is absolutely continuous, then $\zeta^{\prime}(\tau)$ is summable in $[a, b]$ and, conversely, if $\gamma \in L_{1}$, then the function

$$
\begin{equation*}
\xi(\tau)=\left(D^{-1} \gamma\right)(\tau)=\xi_{0}+\int_{u}^{\tau} \gamma(\alpha) d \alpha \tag{2.3}
\end{equation*}
$$

is absolutely continuous. The operator D^{-1} is uniquely defined if the vector $\xi_{0} \in C^{n}$ is fixed.

In what follows, we consider solutions of systems of differential equations of the form (1.5). Let Q be a neighbourhood of an equilibrium where the vector function $\mathbf{Z}(\xi, \tau, \varepsilon)$ is defined for all $\tau \in[a, b], \varepsilon \in\left[-\varepsilon_{0}, \varepsilon_{0}\right]$.

Theorem 1. If $\xi_{0} \in Q$ is fixed, then $\zeta \in C A$ is the solution of the Cauchy problem for Eqs. (1.5) in $[a, b]$ if and only if $\gamma=D \xi$ is the solution of the functional equation

$$
\begin{equation*}
\gamma=\Phi(\gamma) \tag{2.4}
\end{equation*}
$$

in the space L_{1}, with the non-linear operator Φ defined by the formula

$$
\begin{equation*}
[\Phi(\gamma)](\tau)=\varepsilon Z\left[\left(D^{-1} \gamma\right)(\tau), \tau, \varepsilon\right] \tag{2.5}
\end{equation*}
$$

We will apply the projection method to Eq. (2.4). To this end, we have to pass from the space L_{1} to a more restricted (Hilbert) space L_{2} of classes of functions $\gamma:|a, b| \rightarrow \mathbf{C}^{n}$ with the Hermitian product

$$
\begin{equation*}
\left\langle\gamma_{1}, \gamma_{2}\right\rangle_{2}=\int_{a}^{b}\left\langle\gamma_{1}(\tau), \gamma_{2}(\tau)\right\rangle d \tau \tag{2.6}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle$ is the Hermitian product in \mathbf{C}^{n}. The norm in L_{2} is defined by the formula

$$
\begin{equation*}
\|\gamma\|_{2}=-\left(\int_{a}^{b}\|\gamma(\tau)\|^{2} d \tau\right)^{1 / 3} \tag{2.7}
\end{equation*}
$$

We know that when the interval $[a, b]$ is finite, the space L_{2} is continuously embedded in L_{1}. Therefore, its pre-image $D^{-1}\left(L_{2}\right)$ for a fixed ξ_{0} is also continuously embedded in $C A$, which follows from the continuity of the operators D and D^{-1}. In symmetry, we have the following proposition.

Theorem 2. If the sequences $\left\{\gamma_{s}\right\}_{s=1}^{\infty}$ converge to the solution γ of Eq.(2.4) in the space L_{3}, then the sequence $\left\{D^{-1} \gamma_{s}\right\}_{s=1}^{\infty}$ converges to the solution $D^{-1} \gamma$ of Eq. (1.5) in the space $C A$, and in particular the convergence is uniform.
3. Approximation theorem. Let $\left\{\mathrm{e}_{j}\right\}_{j=1}^{n}$ be an orthonormal basis in C^{n} and $\left\{g_{m}(\tau)\right\}_{m=1}^{\infty}$ an orthonormal basis in $L_{2}([a, b], C)$. Then all the vector functions $g_{m}(\tau) \mathbf{e}_{j}=\boldsymbol{\psi}_{m}(\tau)(j=1$, $2, \ldots, n ; m=0, \pm 1, \pm 2, \ldots)$ form an orthonormal basis in L_{2}. Linearly ordering the system of functions $\left\{\psi_{j m}\right\}$, we obtain the orthonormal basis $\left\{\varphi_{m}\right\}_{m=1}^{\infty}$. For the case of the interval $[0,2 \pi]$, the basis $\left\{g_{m}(\tau)\right\}$ is conveniently chosen as the trigonometric system of functions $\left\{(2 \pi)^{-1 / 2 e e^{i n \pi}}\right\}(m \in Z)$.

Let $\boldsymbol{P}_{m}(\dot{m} \in \mathbf{N})$ be the orthogonal projection operator on the finite-dimensional space spanned by the first m basis vectors $\left\{\varphi_{\mathrm{s}}\right\}_{s=1}^{m}$.

The right-hand sides of Eq. (1.5) are usually assumed to be sufficiently smooth. In our case, we have analyticity in the variables'?. Therefore, the condition $\mathbf{Z} \in L_{\mathbf{2}}\left(\{a, b], C^{1}(Q)\right)$ or

$$
\begin{equation*}
\|Z\|_{2}^{1}=\left\{\int_{a}^{b}\left[\left.\sup _{\zeta \approx Q}\left(\|Z(\xi, \tau, \varepsilon)\|,\left\|Z_{\zeta}(\xi, \tau, \varepsilon)\right\|\right)\right|^{2} d \tau\right\}^{1 / x}<\infty\right. \tag{3.1}
\end{equation*}
$$

used below is sufficiently weak and a priori satisfied.
By the existence and uniqueness of the solution of the cauchy problem $\zeta(\tau)$ for Eq. (1.5), Eq. (2.4) should also have a unique solution $\zeta^{\prime}(\tau)$ (by Theorem 1). It remains to construct the Galerkin approximations $\gamma_{m}(\tau)$ of this function in the space L_{2}. They are solutions of the (in general non-linear) finite-dimensional equations

$$
\begin{equation*}
\gamma_{m}=P_{m} \Phi\left(\gamma_{m}\right)\left(\gamma_{m} \in P_{m} L_{2}, m \in \mathbf{N}\right) \tag{3.2}
\end{equation*}
$$

We will apply the result of $/ 3 /$ to the functional Eq. (2.4). This requires refining the domain of definition of the operator Φ. This is the set $\Omega \subset L_{\mathbf{z}}$ of functions $\gamma(\tau)$ such that for a fixed $\zeta_{0} \in Q$ for all $\tau \in[a, b]$ we have $\left(D^{-1} \gamma\right)(\tau) \in Q$. Since $Q \subset C^{n}$ is open and the value set of the vector function $\left(D^{-1} \gamma\right)(\tau)$ is compact (because the interval $[a, b]$ is finite), we obtain that the set Ω is open in the space L_{2}. Thus, Ω is a domain in L_{2},

Theorem 3. When condition (3.1) holds for a fixed $\zeta_{0} \in Q$, Eq. (2.4) has a unique solution γ° if the solution of the Cauchy problem of Eq.(1.5) exists in the entire interval.

Moreover, if $e>0$ is sufficiently small, then there exist an integer N and $\delta, 0,0$ such that for any $m>N$ Eq. (3.2) has a unique solution γ_{m} in the sphere $\left\|\gamma-\gamma_{0}\right\|_{2} \leqslant \delta$ and

$$
\left\|\gamma_{m}-\gamma^{\circ}\right\|_{2} \leqslant\left\|\gamma^{\circ}-P_{m} \gamma^{\circ}\right\|_{2}+\left\|\gamma_{m}-P_{m} \gamma^{\circ}\right\|_{2} \rightarrow 0 \quad(m \rightarrow \infty)
$$

and for some $c_{1}, c_{2}>0$ we also have the two-sided bound

$$
c_{1}\left\|P_{m} \boldsymbol{\Phi}\left(\gamma^{\circ}\right)-\rho_{m} \Phi\left(\rho_{m} \gamma^{\circ}\right)\right\|_{2} \leqslant\left\|\gamma_{m}-\rho_{m} \gamma^{\circ}\right\|_{2} \leqslant c_{2}\left\|P_{m} \boldsymbol{\Phi}\left(\gamma^{\circ}\right)-P_{m} \boldsymbol{\Phi}\left(P_{m} \gamma^{\circ}\right)\right\|_{2}
$$

This theorem guarantees that the finite-dimensional solution $\gamma_{m}(\tau)$ obtained by the Galerkin scheme (3.2) is an approximation in L_{2} to the exact solution $\gamma^{\circ}(\tau)$ of Eq. (2.4). Suppose that the function γ_{m} has been found in the form

$$
\begin{equation*}
\gamma_{m}(\tau)=\sum_{j=1}^{m} \gamma_{m}^{j} \varphi_{j}(\tau) \quad\left(\gamma_{m}^{j} \in \mathbf{C}\right) \tag{3.3}
\end{equation*}
$$

Then by Theorem 2 the vector function

$$
\zeta_{m}(\tau)=\zeta_{0}+\sum_{j=1}^{n} \gamma_{m}^{j} \int_{a}^{t} \varphi_{j}(\alpha) d \alpha
$$

is a uniform approximation to the required solution of the Cauchy problem.
4. Approximation algorithm. Returning to the two-dimensional system of differential Eqs. (1.5), consider an orthonormal basis in the vector functions space $L_{2}\left([0,2 \pi]\right.$, C^{2}). It is defined by a trigonometric orthonormal system and consists of vector functions of the form ($2 \pi)^{-1 / 2} e^{i \mu r} e_{j}$ $(j=1,2 ; s \in Z)$. We number the basis functions so that

$$
\begin{gather*}
\varphi_{m}(\tau)=(2 \pi)^{-1 / s e^{i} \tau} \mathbf{e}_{j}(j=m-2[(m-1) / 2] \tag{4.1}\\
\left.s=\left[s^{\prime} / 2\right]\left(2\left(s^{\prime}-2\left[s^{\prime} / 2\right]\right)-1\right), s^{\prime}=[(m-1) / 2]+1, m \in \mathbf{N}\right)
\end{gather*}
$$

In the Galerkin scheme we use the projectors $P_{4}{ }^{m+2}$. Then the finite-dimensional approximations to the exact solution lie in the space formed by the functions $(2 \pi)^{-1 / 2} e^{i \pi \tau} e_{j}(j=1,2 ; s=$ $0, \pm 1, \pm 2, \ldots$.).

We recall that the basis vectors in C^{2} may be treated as coordinate columns $e_{1}=(1,0)^{T}$, $\mathbf{e}_{2}=(0,1)^{T}$. Then any function in the space $P_{4 m+2} L_{2}\left([0,2 \pi], C^{2}\right) \simeq C^{4 m+2}$ can be represented in the form

$$
\begin{equation*}
\gamma_{m}(\tau)=\Sigma_{m} e^{i s \tau} c_{s} \quad\left(c_{s}=\left(c_{s}{ }^{1}, c_{s}^{2}\right)^{T}\right) \tag{4.2}
\end{equation*}
$$

where $c_{k} \in C^{2}$ are arbitrary complex column vectors. Here and henceforth, Σ_{m} stands for summation over s from $s=-m$ to $s=m$.

Consider the right-hand side of system (1.5) defined by relationship (1.6). The homogeneous forms $Z_{s}(\xi, \tau)$ with periodic coefficients can be represented in terms of symmetrical $s-1$ inear forms $L_{s}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}, \tau\right)$. Therefore $Z_{s}(\xi, \tau)=L_{s}(\xi, \xi, \ldots, \xi, \tau)$ (see equality (1.6)).

In order to derive an equation of the form (3.2), we apply the operator D^{-1} to the function (4.2), which gives

$$
\begin{equation*}
\left(D^{-1} \gamma_{m}\right)(\tau)=\zeta_{0}-\Sigma_{m}^{\prime} \frac{1}{i s} c_{s}+\Sigma_{m}^{\prime} \frac{1}{i s} e^{i s \tau} \mathbf{c}_{s}+\tau \mathbf{c}_{0} \tag{4.3}
\end{equation*}
$$

Here and henceforth, Σ_{m}, denotes summation over s from $s=-m \quad$ to $s=-1$ and from $s=+1$ to $s=m$.

After substituting this formula and the Fourier expansions of the periodic coefficjents of the forms L_{s} into the right-hand side of (1.6), we obtain a function of the form

$$
\begin{equation*}
\varepsilon Z(\epsilon, \tau, \varepsilon)=\varepsilon \Sigma_{\infty}\left(f_{0 s}(c, \varepsilon)+f_{1 s}(c, \varepsilon) \tau+f_{2 s}(c, \varepsilon) \tau^{2}\right) e^{i s \tau}+\sum_{j=s}^{\infty} \varepsilon^{j-1} \tau^{j} \Sigma_{\infty} f_{j s}(c, \varepsilon) c^{i s \tau} \tag{4.4}
\end{equation*}
$$

$$
\begin{equation*}
\varepsilon \mathbf{Z}(\xi, \tau, \varepsilon)=\varepsilon \Sigma_{\infty} \mathbf{h}_{s}(\mathbf{c}, \varepsilon) e^{i s t} \tag{4.5}
\end{equation*}
$$

Note that the products $\tau e^{i s t}$ occur on the right-hand side with a multiplier e^{j-1}. This enables us to take into account perturbations in the procedure of the expansion of the right-
hand side, because for sufficiently small $\varepsilon>0$ the product $\varepsilon^{j-1} \tau^{j}$ tends to zero as $j \rightarrow \infty$.
Applying the projection operators $P_{4 m+2}$ to the function (4.5), we obtain the Galerkin equation ($\mathbf{h}(\mathbf{c}, \boldsymbol{\varepsilon}$) is an analytical vector function)

$$
\begin{equation*}
\mathbf{c}=\varepsilon \mathbf{h}(\mathrm{c}, \mathrm{\varepsilon}) \tag{4.6}
\end{equation*}
$$

Eq. (4.6) can be solved iteratively by the formula

$$
\begin{equation*}
c^{(n+1)}=\operatorname{eh}\left(e^{(n)}, e\right) \quad(n=0,1, \ldots) \tag{4.7}
\end{equation*}
$$

starting with the initial approximation $c^{(0)}$ (we may take the vector $\mathbf{e}^{(0)}=0$, which is the solution for $\varepsilon=0$). For sufficiently small $\varepsilon>0$, the iterative process is convergent.

Indeed, we see from the proof of Theorem 3 that, for $\varepsilon>0$ satisfying the condition of the theorem, the norm of the derivative of the operator Φ in Eq.(2.4) is less than 1 . Therefore, for sufficiently large m, the norm of the derivative of the finite-dimensional approximation $\varepsilon h(c, e)$ of the operator Φ in the space of sequences is less than 1 .

Therefore, in the metric of the Hermitian space $C^{4 n+2}$, eh (c, $\left.\varepsilon\right)$ is a contracting mapping, which ensures convergence of the iterative process to the exact solution of Eq. (4.6).

Thus, assume that we have obtained an approximation $\mathbf{e}^{(n)}$ to the solution of Eq. (4.6) in the space of sequences $\mathrm{C}^{4^{m+2}}$. This means that in the metric of the space $L_{2}\left([0,2 \pi], \mathrm{C}^{2}\right)$ the function

$$
\begin{equation*}
\gamma_{m m+2}^{(n)}(\tau)=\Sigma_{m} e^{i s \tau} e_{3}^{(n)} \tag{4,8}
\end{equation*}
$$

approximates the solution (3.3) of Eq. (3.2). But for sufficiently large m the function $\gamma_{4} m+2(\tau)$ in (3.3) approximates by Theorem 3 the exact solution $\gamma(\tau)$ of Eq. (2.4). Therefore, in the interval $[0,2 \pi]$ the function

$$
\begin{equation*}
\xi_{4 m+2}^{(n)}(\tau)=\xi_{0}+\tau c_{0}^{(n)}+\Sigma_{m}^{\prime} \frac{e^{i s \tau}-1}{i s} c_{s}^{(n)} \tag{4.9}
\end{equation*}
$$

ensures uniform approximation of the exact solution of Eq.(1.5). The coefficients $\mathbf{c}_{s^{(n)}}^{\left.()^{n}\right)}$ depend on the vector ζ_{0} as a parameter. Formula (4.7) enables us to obtain a solution of Eq.(4.6) in both numerical and analytical form.

Formula (4.9) may be applied to construct a Poincare recurrence mapping. For each initial vector ξ_{0}, use either a numerical procedure or (4.9) with analytical expressions for the coefficients to construct a path by substituting into (4.9) the coordinates of different initial vectors ξ_{0}.

5. Appendix.

Proof of Theorem 1. The space CA may be decomposed into a direct sum $\mathbf{c}^{n}+C A^{\infty}$, where $C A^{\circ}$ consists of functions $\zeta(\tau)$ such that $\zeta(0)=0$. Then we can show that the differentiation operator restricted to the affine subspace $\epsilon_{0}+C A^{\circ}$ is a homeomorphism.

We know that the derivative of an absolutely continuous function is summable, and

$$
\operatorname{Var}([a, b], \xi)=\int_{a}^{b}\|(D \xi)(\tau)\| d \tau=\left\|D_{\delta}\right\|_{1}
$$

This property leads to continuity, bijectivity, and openness of the mapping D, i.e., this is a homeomorphism.

Therefore, by fixing the initial vector \boldsymbol{b}_{0} we fix the affine subspace $\boldsymbol{b}_{0}+C A^{\circ}$, and the solutions of Eq. (1.5) and (2.4) are in one-to-one correspondence by the homeomorphism $D: \zeta_{0}+C A^{\circ} \rightarrow L_{1}$.

Proof of Theorem 2. Convergence in L_{2} in the finite interval $[a, b]$ implies convergence in L_{1}. Since D is a homeomorphism on the subspace $\zeta_{0}+C A^{\circ}$ the sequence $\left\{D^{-1} \gamma_{N}\right\}_{k=1}^{\infty}$ converges to the solution $D^{-1} \gamma$ uniformly.

Proof of Theorem 3. In order to apply the results of $/ 3 /$, we need to check a number of conditions.

First, we need to prove Frechet-differentiability of the operators Φ and $p_{m} \Phi$. The mapping Φ is the composition of mappings $\mathrm{eZ} \circ D^{-1}$. The affine operator D^{-1} is continuous and therefore differentiable.

Differentiability of \mathbf{z} can be proved by the Lebesgue theorem on the passage to the limit under the sign of the integral by examining the functional expression

$$
\mathbf{z}(\xi+h)-\mathbf{Z}(\xi)-\mathbf{z}_{\xi}^{\prime}(\xi) \cdot h=\omega(\mathbf{h})
$$

The derivative is given by the formula

$$
\left(\mathbf{z}_{\xi}^{\prime} \mathbf{h}\right)(\mathfrak{\tau})=\mathbf{z}_{6^{\prime}}[\boldsymbol{f}(\tau), \tau, \varepsilon] \mathbf{h}(v) \quad(\mathrm{h} \in C A)
$$

The differentiability of $P_{m} \Phi$ follows from continuity of the projector, and $\left(P_{m} \Phi\right)^{\prime}=P_{m} \circ \Phi^{\prime}$.

Now, we have to show continuous invertibility in the Hilbert space L_{2} of the operator $E-\Phi^{\prime}(y)$ where E is the identity operator. Applying a chain of inequalities, we obtain a bound for the operator norm of $\Phi^{\prime}(\gamma)$:
$\left\|\Phi^{\prime}(v)\right\|_{2,2} \leqslant(b-a)^{1 / 2} \varepsilon_{\varepsilon}\|\mathbf{Z}\|_{2^{1}}$
We see that for sufficiently small ε the operator $E-\Phi^{\prime}(\%)$ is invertible.
Finally, we have to check the approximation conditions. The first condition $\| \gamma P_{m} p_{2} \ldots$ $(m \rightarrow \infty)$ follows from completeness of the basis functions. The second condition $\| P_{m} \Phi\left(P_{m}\right)$ $\Phi(\gamma) \|_{2} \rightarrow 0 \quad(m \rightarrow \infty)$ follows from the continuity of the operator Φ. The approximation conditions for the derivatives of the operators $\left\|P_{m} \boldsymbol{\Phi}^{\prime}\left(P_{m} \gamma\right)-\Phi^{\prime}(v)\right\|, 2 \rightarrow 0(m, \ldots)$ are checked as follows. The triangle inequality (and also the bound $\left\|P_{m}\right\|_{2,2} \leqslant 1$) give

$$
\left\|P_{m} \boldsymbol{\Phi}^{\prime}\left(P_{m} \gamma\right)-\boldsymbol{\Phi}^{\prime}(\gamma)\right\|_{2,2}\left\|\boldsymbol{\Phi}^{\prime}\left(P_{m} \gamma\right)-\boldsymbol{\Phi}^{\prime}(\gamma)\right\|_{2,2}+\left\|P_{m} \boldsymbol{\Phi}^{\prime}(\gamma)-\boldsymbol{\Phi}^{\prime}(\gamma)\right\|_{2,2}
$$

As before, we use the Lebesgue lemma to prove continuity of the mapping $\boldsymbol{\Phi}^{\prime}: \Omega \rightarrow I_{(}\left(I_{2}\right)$ to the algebra of linear continuous operators of the space L_{2}. Therefore $\left\|\Phi^{\prime}\left(P_{m} \gamma\right)-\Phi^{\prime}(\gamma)\right\|,,_{2} \rightarrow 0$ $(m \rightarrow \infty)$. Continuity of Φ^{\prime} is also needed to prove the existence of a solution of Eq.(3.2) by the method of contracting mappings.

Now it is easy to see that the operator $\boldsymbol{\Phi}^{\prime}(\gamma)$ is compact. Therefore, the set $\boldsymbol{\Phi}^{\prime}(\gamma) S$, where S is the unit sphere in L_{2}, is precompact. From pointwise convergence of the sequence of operators $\left\{\left.P_{m} \quad E\right|_{n=1} ^{\infty}\right.$ we obtain by the Banach-Stcinhaus theorcm $/ 2 /$ that the convergence on the set $\Phi^{\prime}(\gamma) S$ is uniform. Therefore, we finally get

$$
\left\|P_{m} \Phi^{\prime}(\gamma)-\boldsymbol{\Phi}^{\prime}(\gamma)\right\|_{2,2}=\sup _{\| l \mathrm{l}, \mathrm{k}=1}\left\|\left(P_{m}-E\right) \boldsymbol{\Phi}^{\prime}(\gamma) \mathbf{h}\right\|_{2} \rightarrow 0(m \rightarrow \infty)
$$

All the conditions of $/ 3 /$ have been checked for Eq. (2.4). I would like to thank V.G. Demin for his interest.

REFERENCES

1. BOGOLYUBOV N.N. and MITROPOL'SKII YU.A., Asymptotic Methods in the Theory of Non-linear Oscillations, Nauka, Moscow, 1974.
2. SCHWARZ L., Analysis, 1, Mir, Moscow, 1972.
3. KRASNOSEI'SKII M.A., VAINIKKO G.M., ZABREIKO P.P., RUTITSKII YA.B. and STETSENKO V.YA., Approximate Solution of Operator Equations, Nauka, Moscow, 1969.

[^0]: rPrikl. Matem. Mekhan. , 53,4,531-538,1989

