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THE CONSTRUCTION OF PHASE PATHS OF A HAMILTONIAN SYSTEM 
IN THE NEIGHBOURHOOD OF AN EQUILIBRIUM'jg 

1.1. KOSENKO 

A non-autonomous periodic Hamiltonian system with one degree of freedom 
is studied in the neighbourhood of an elliptical equilibrium point. A 
uniform approximation of the solution in a finite time interval in the 
resonance case is determined using the projection method, instead of 
the traditional perturbation theoretical method. 

The Cauchy problem is reduced to a functional equation in the 
space of the derivatives, and a Galerkin scheme is constructed for this 
equation. A theorem is proved on convergence of the sequence of 
approximations to the exact solution. Every finite-dimensional 
approximation of sufficiently high order may be found by explicit 
iterations. The results can be generalized to dynamical systems of 
higher dimensions. 

1. Statement of the problxm. Near the equilibrium q=p=o, the canonical system 
with n degrees of freedom has the form 

q' = If,, p' = -H, (q,pE R") (1.1) 

where the Hamilton function can be expanded in a power series around zero starting with 
second-order terms 

H(q, p, t)= H,(q, P, t) + H,(q, ~7 t) + . . . 

The paths in a small neighbourhood can be constructed by perturbation theory. Changing 
to new variables q = EX, p = EY, we obtain the system of equations 

x' = K,, Y *_ --K, (x,y~ R") 

The new Hamiltonian has the form 

K(x,y,t,~)=H~(x,Y,t)+~H~(x,Y,t)t... (1.2) 

The non-perturbed case corresponds to a linear (in general non-autonomous) system. We 

can change to new variables by the method of variation of arbitrary constants. Denoting the 
phase vector by x = (x7 Y)T, we can write the solution of the Hamiltonian system in the form 

z = 2 (t) 5 (2 (0) = E, F, E R2") (1.3) 

where Z(t) is the fundamental matrix. The transformation defined by 2 0) is obviously 
canonical. Changing to the phase vector 5, we obtain the Hamiltonian system 

j- = eZFS (j, t, E) (1% = -E) 

EF (5, t, E) = eZf, (Z (t) 5, t) + . . . 
(1.4) 

The procedure proposed in this paper can be applied after the given problem has been 
reduced to this form. 

To fix our ideas, 
time) 

consider a system with one degree of freedom and a Zn-periodic (in 
Hamilton function K(q,p, t)(q,p ER). The problem of the motion of an asteroid in the 

neighbourhood of a periodic orbit can be reduced to such a problem. Thus, let fik#O be 
the characteristic exponents of the first-approximation system, where 21 is a non-integer. 
Then the canonical Zn-periodic transformation 
H, = 2% (Q" + Pa). 

(Q. P) c-c (09 PI reduces H, to normal form 

We apply a scaling transformation to enlarge the neighbourhood of the equilibrium as 
described above: Q = ex, P = ey. 
where z = (2, y)r, 

The solution of the unperturbed problem now has the form (l-3), 
and Z(t) is the fundamental matrix 
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1 cosht sin At 
z(t) = ,- 9inX.t cosht II 

Thus, 

z (t) = c cos ht + If sin ht = 2-’ (5 - i IS) &ld + (at)--1 (C -t i rg) ~4hf 

where f = (&, c2), and I is the symplectic matrix (I2 = -E). Thus, the system of differen- 
tial equations has a standard form (1.4) (in the sense of Bogolyubov /l/) with the Hamilton 
function 

eF(F,t,c)= cZj3 (2-'(5 - ilQ& + (Zi)-"(5 + il;)e-ihf,,t)-+. . . 

Since the explicit dependence of the homogeneous forms H,(z, t) (k> 3) on t _ 
periodic, their coefficients can be expanded in Fourier series in the functions ,inl;s, E ;; 
These expansions may be treated as Laurent series in the variable cit. The Hamiltonian can 
be conveniently represented in the form 

where the homogeneous forms F, (in the variables ci(i = 1,2) are expressed as & = H, 
(Z V) 5, t). 

Resonance cases are of particular interest. In these cases, we should have kh = r cl 

Z (k> 3) and the Hamilton function eF(F,t,e) is t-periodic. For ease of presentation, 
we will change to a new independent variable z by the formula t = h%. The homogeneous 
forms F, are polynomial in 5, eirr, and @s, and their expansions contain both positive 
and negative powers of exponential functions. 

In what follows, the phase space is C2 - the complexification of R2. 
After all these transformations,we obtain a non-autonomous r -periodic system of second- 

order differential equations (the prime denotes differentiation with respect to t) 

The vector functions Z, are homogeneous in c of degree s. 

2. Reduction. Our goal now is construct in [O,Zal the solution of the Cauchy problem 
of system (1.51 corresponding to the initial condition vector f,. We will use the projection 
method. In order to ensure uniform approximation to the solution in 10, 2x1, further 
transformation of the problem is required. We will change from the space of continuous 
vector functions 5 (7) to the space of the derivatives 5' (r). 

Let us formalize our statements in rigorous form. We denote by CA the class of func- 
tions 6: [a, Al-+ C* absoluteiy continuous in la, bjc R. CA is a linear space, and if we 
introduce the norm 

li f;ila = II f, @)I + Var (ia, Al, f) (2.1) 

then CA becomes a Banach space. 
On the other hand, consider the Banach space L, of classes of almost everywhere equal 

Lebesgue-integrable functions y: [a, b1-e C”. The norm in L, is defined by the formula 

Now let D: CA + ~51 be the differentiation operator with respect to the variable 
z: (0s) (7) = 5’ (7). We know from analysis /2/ that there is a unique correspondence between 
the properties of summability and absolute continuity of functions of a real variable. If 
the function c(z) is absolutely continuous, then 6' (a) is summable in la, bl and, con- 
versely, if yE L,, then the function 

S (T) = (D-W (4 = 5, + i Y (4 da 
" 

(2.3) 
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is absolutely continuous. The operator D-' is uniquely defined if the vector FoE:C 

is fixed. 
In what follows, we consider solutions of systems of differential equations of the form 

(1.5). Let Q be a neighbourhood of an equilibrium where the vector function Z (5, z, 8) is 

defined for all z E [a, bl, e E [--Eg, hl. 

Theorem I. If &,EQ is fixed, then 5~ CA is the solution of the Cauchy 

problem for Eqs.(1.5) in [a, bl if and only if Y = DC is the solution of the functional 

equation 
Y=@(Y) (2.4) 

in the space LX, with the non-linear operator Q, defined by the formula 

f@ (Y)l (a) = eZ IP-rY) (9, f, el (2.5) 

We will apply the projection method to Eq.(2.4). To this end, we have to pass from the 
space L, to a more restricted (Hilbertf space L, of classes of functions y: [a, 61-t C’ 
with the Hermitian product 

where (., .> is the Hermitian product in C". The norm in Le is defined by the formula 

We know that when the interval (a,61 is finite, the 
in L,. Therefore, its pre-image P1(&) for a fixed &, 
CA, which follows from the continuity of the operators t) 
following proposition. 

(2.7) 

space & is continuously embedded 
is also continuously embedded in 
and D-r. In symmetry, we have the 

Theorem 2. If the sequences {y,& converge to the solution Y of Eq.(2.4) in the 
space L,, then the sequence {D-ly,}s”,t converges to the solution D-ly of Eq.tl.5) in the 

space CA, and in particular the convergence is uniform. 

3. Approsimation theorem. Let {el}&=l be an orthonormal basis in C" and {&???I (7)xL 

an orthonormal basis in L, (la, bl, C). Then all the vector functions 
2 

gm(z)ej=Sjm(4 (i=k 
, . . ., n; m = 0, *I, *2, . . .) form an orthonormal basis in .&. Linearly ordering the 

system of functions ts J + , we obtain the orthonormal basis &&lX=I. For the case of the 
interval [O, 2nf, the basis {&,,(z)} 
of functions ((2a)-'~***1t} (m E Z). 

is conveniently chosen as the trigonometric system 

Let P,(tiE N) be the orthogonal projection operator on the finite-dimensional space 
spanned by the first m basis vectors +PXl. 

The right-hand sides of Eq.(1.51 are usually assumed to be sufficiently smooth. 
case, we have analyticity in the variables'g. 

In our 
Therefore, the condition Z E J% (Is, bl, 6" (Q)) 

or 

used below is sufficiently weak and a priori satisfied. 
By the existence and uniqueness of the solution of the Cauchy problem g(r) for Eq. 

(1.51, Eq.(2.4) should also have a unique solution g'(7) (by Theorem 1). It remains to 
construct the Galerkin approximations Ym (r) of this function in the space L,. They are 
solutions of the (Ln general non-linear) finite-dimensional equations 

%I= ~~~(Y~) (Ylsl~~ln&~~E~) 13.21 
We will apply the result of /3/ to the functional Eq.(2.4). This requires refining the 

domain of definition of the operator a. This is the set Q c L, 
that for a fixed %o~ Q for all rG5 (a,bl we have (D-ry)(@E Q. 

of functions y(r) such 
Since QcCn 

the value set of thelvector function (D-'Y)(T) is compact (because the interval 
is open and 

finite), we obtain that the set s2 
la, bl is 

is open in the space L,. Thus, 51 is a domain in L,. 

Theorem 3. When condition (3.1) holds for a fixed 
ution y" 

tom Q, Eq.(2.4) has a unique sol- 
if the solution of the Cauchy problem of Eq.(1.5) exists in the entire interval. 



Moreover, ii E > 0 is sufficiently small, then there exist an integer N and b;,O SUCh 

that for any m> N Eq.(3.2) has a unique solution ym in the sphere jj y - y"ijz ~<i 6 and 

il?Sn-~"Ile~~~4-~m~o//*iliYm--PmYCil:!-,~~ (m+=) 

and for some Cl7 c2 > 0 we also have the two-sided bound 

Cl/lP,@t,(PO) - P,@V,Y")II, < /IYn--P,Y0112 < c,II~,~(Y”)--P,Q,(~~Y”) 112 

This theorem guarantees that the finite-dimensional solution J+,,(T) obtained by the 
Galerkin scheme (3.2) is an approximation in L, to the exact solution yJ (z) of Eq.(2.4). 

Suppose that the function vrn has been found in the form 

Then by Theorem 2 the vector function 

is a uniform approximation to the required solution of the Cauchy problem. 

4. Approximation algorithm. Returning to the two-dimensional system of differential Eqs. 
(1.51, consider an orthonormal basis in the vector functions space La@, 2nI, (7). It is defined 
by a trigonometric orthonormal system and consists of vector functions of the form (2fl)-'ll&2ei 

(j = 1, 2; s E Z). We number the basis functions so that 

In the Galerkin scheme we use the projectors PJnria. Then the finite-dimensional approxi- 
mations to the exact solution lie in the space formed by the functions (2n)-'l&ej (j = 1, 2; s = 
0, fl, *z, * * .)- 

We recall that the basis vectors in C2 may be treated as coordinate columns 
Then any function in the space P,,+,L, ([O, 2~~1, Ca)c C4m+2 

el = (1, OY, 
ez = (0, 1)T. can be represented in 
the form 

v,(z) = Z&Q%, (cc = (C,l,C,2)T) (4.2) 

where c, EC' are arbitraxy complex column vectors. Here and henceforth, 2, stands for 
summation over s from s=--m to s= m. 

Consider the right-hand side of system (1.5) defined by relationship (1.6). The homo- 
geneous forms Z, (CT-c) with periodic coefficients can be represented in terms of symmetrical 
s-linear forms L, (i,, Tar . . ., C,, T). Therefore Z, (F, rf = L, (r, ?, . f .I f, x) (see equality (1.6)). 

In order to derive an equation of the form f3.2), we apply the operator D-l to the 
function 14.2), which gives 

(4.3) 

Here and henceforth, x,' denotes summation over s from s= -m to s= -1 and 
from s = +1 to s= m. 

After substituting this formula and the Fourier expansions of the periodic coefficients 
of the forms L, into the right-hand side of (1.61, we obtain a function of the form 

(4.4) 

c = (coly c&)2, CL1, c-12, Cl’, c,a, . . ., Cml, c,‘2)T fc is the vectox of unknown coefficients). The 
functions f$* (c, 8) (j = 0, 1, * ” .; s = -00, . * -I +Qoj are analytic in c and a. Power series 
expansions can be obtained after collecting similar terms with products of the farm &i" 

Representing the functions &+7 as Fourier series in IO, 2d and substituting these 
expansions into (4.41, we obtain the right-hand side in the form 

EZ (5, t, E) = E&h, (c, E) eiss (4.5) 

Note that the products reiar occur on the right-hand side with a multiplier ,A This 
enables us to take into account perturbations in the procedure of the expansion of the right- 
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hand side, because for sufficiently small e >O the product sj-+ tends to zero as j-t-00. 

Applying the projection operators Pdm+, to the function (4.5), we obtain the Galerkin 

equation (h(c, E) is an analytical vector function) 

c = Eh (C, E) (4.6) 

Eq.(4.6) can be solved iteratively by the formula 

ef=+n = ah(&), ef (n = 0, 1, . ..) (4.7) 

starting with the initial approximation e&Y (we may take the vector a(@ = 0, which is the 

solution for E = 0). For sufficiently small e>O, the iterative process is convergent. 

Indeed, we see from the proof of Theorem 3 that, for c>O satisfying the condition 

of the theorem, the norm of the derivative of the operator 9 in Eq.(2.4) is less than 1. 

Therefore, for sufficiently large m, the norm of the derivative of the finite-dimensional 

approximation ah (c, 6) of the operator Q in the space of sequences is less than 1. 

Therefore, in the metric of the Hermitian space G*"'tZ , eh Cc, 8) is a contracting mapping, 

which ensures convergence of the iterative process to the exact solution of Eq.(4.6). 
Thus, assume that we have obtained an approximation c(n) to the solution of Eq.(4.6) 

in the space of sequences c4m+*, This means that in the metric of the space L, (IO, 24, CZ) 
the function 

(4.8) 

approximates the solution (3.31 of Eq.(3.21. But for sufficiently large m the function 

Y4m+s @) in (3.3) approximates by Theorem 3 the exact solution r(z) of Eq.(2.41. Therefore, 
in the interval [O,Znl the function 

ensures uniform approximation of the exact solution of Eq.(1.5), The coefficients cgln) 
depend on the vector c,, as a parameter. Formula (4.7) enables us to obtain a solution of 
Eq.(4.6) in both numerical and analytical form. 

Formula (4.9) may be applied to construct a Poincare recurrence mapping. For each 
initial vector co, use either a numerical procedure or (4.9) with analytical expressions for 
the coefficients to construct a path by substituting into (4.9) the coordinates of different 
initial vectors co. 

prOOf Of Theorem 1. The space C% may be decomposed into a direct sum cn+Ctio, where 
CA0 consists of functions 6(z) such that g(O)= 0. Then we can show that the differen- 
tiation operator restricted to the affine subspace co+ CA’ is a homeomorphism. 

We know that the derivative of an absolutely continuous function is summable, and 

This property leads to continuity, bijectivity, and openness of the mapping D, i.e., 
this is a homeomorphism. 

Therefore, by fixing the initial vector co we fix the affine subspace &i-CA", and 
the solutions of Eq.(1.5) and (2.4) are in one-to-one correspondence by the homeomorphism 
D: &, + CA’ --s LI. 

Proof of Theorem 2. Convergence in L, in the finite interval [a,bj implies convergence 
in L,. Since D is a homeomorphism on the subspace &+CA’ the sequence fD-%ff& converges 

to the solution D-‘y uniformly. 

Proof of Theorem 3. In order to apply the results of /3/, we need to check a number of 
conditions. 

First, we need to prove Frechet-differentiability of the operators 0 and P",Q. The 
mapping Cp is the composition of mappings 820 D-l. The affine operator D-l is continuous 
and therefore differentiable. 

Differentiability of 2 can be proved by the Lebesgue theorem on the passage to the limit 
under the sign of the integral by examining the functional expression 

z(F,+h)--Z(g)-ZZg'(E).h=o(h) 

The derivative is given by the formula 

(Zt'k) fr) = Zg'[%($T,F]h@) (k= CA) 

The differentiability of pm@ follows from continuity of the projector, and (P,#)‘=p, oqv. 



416 

Now, we have to show continuous invertibility in the Hilbert space L, of the operator 
E - Q' (Y), where E is the identity operator. Applying a chain of inequalities, we obtain 
a bound for the operator norm of Q'(y): 

11 Q' (7) [jz,z i (6 - u)"'c 11 Z 11~' 

We see that for sufficiently small e the operator E-Q'(p) is invertible. 
Finally, we have to check the approximation conditions. The first condition ii? I’,,,?!a ..iI 

cm - M) follows from completeness of the basis functions. The second condition [/ I’,,,@ Cl’,,,; 1 
@ (Y) II* - 0 (m - 03) follows from the continuity of the operator Q. The approximation Con- 

ditions for the derivatives of the operators IIP,,@‘(P,,y)- @’ (p) 1/2.n-(j Cm -1 are checked as 
follows. The triangle inequality (and also the bound \~P,,,~~z,E “11 give 

/I P,Q’ (Pm?) - w (Y) /12,2 I/ Q’ (P,Y) ~ Q’ (I’) /lL,B -i !I P,Q’ (i) - Q’ (7)1!2,2 

As before, we use the Lebesgue lemma to prove continuity of the mapping Q': Q--L(L,) to 
the algebra of linear continuous operators of the space L,. Therefore II Q’ G’,,r) - Q’ (vj /I:,& ~- ” 
(m - co). Continuity of Q' is also needed to prove the existence of a solution of Eq.(3.2) 
by the method of contracting mappings. 

Now it is easy to see that the operator Q'(v) is compact. Therefore, the set Q’ h4 S, 
where S is the unit sphere in L,. is precompact. From pointwise convergence of the sequence 
of operators {P,-SE)~=, we obtain by the Banach-Steinhaus theorem /2/ that the convergence 
on the set Q'(v)8 is uniform. Therefore, we finally get 

11 P,Q’ (Y) -Q’ W l/s,2 = ,,;,;zl II P,,, - f0 Q’ W h lla - 0 Cm - m) 

All the conditions of /3/ have been checked for Eq.(2.4). 
I would like to thank V.G. Demin for his interest. 
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